NF-KappaB in Long-Term Memory and Structural Plasticity in the Adult Mammalian Brain
نویسندگان
چکیده
The transcription factor nuclear factor kappaB (NF-κB) is a well-known regulator of inflammation, stress, and immune responses as well as cell survival. In the nervous system, NF-κB is one of the crucial components in the molecular switch that converts short- to long-term memory-a process that requires de novo gene expression. Here, the researches published on NF-κB and downstream target genes in mammals will be reviewed, which are necessary for structural plasticity and long-term memory, both under normal and pathological conditions in the brain. Genetic evidence has revealed that NF-κB regulates neuroprotection, neuronal transmission, and long-term memory. In addition, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult neurogenesis was observed during aging. Proliferation of neural precursors is increased; however, axon outgrowth, synaptogenesis, and tissue homeostasis of the dentate gyrus are hampered. In this process, the NF-κB target gene PKAcat and other downstream target genes such as Igf2 are critically involved. Therefore, NF-κB activity seems to be crucial in regulating structural plasticity and replenishment of granule cells within the hippocampus throughout the life. In addition to the function of NF-κB in neurons, we will discuss on a neuroinflammatory role of the transcription factor in glia. Finally, a model for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly the contradictory, the friend or foe, role of NF-κB in the nervous system.
منابع مشابه
P20: The Role of Protein Kinases in Memory
When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...
متن کاملNF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling.
Synaptic activity-dependent de novo gene transcription is crucial for long-lasting neuronal plasticity and long-term memory. In a forebrain neuronal conditional NF-kappaB-deficient mouse model, we demonstrate here that the transcription factor NF-kappaB regulates spatial memory formation, synaptic transmission, and plasticity. Gene profiling experiments and analysis of regulatory regions identi...
متن کاملImpaired adult neurogenesis associated with short-term memory defects in NF-kappaB p50-deficient mice.
Neurogenesis proceeds throughout adulthood in the brain of most mammalian species, but the molecular mechanisms underlying the regulation of stem/progenitor cell proliferation, survival, maturation, and differentiation have not been completely unraveled. We have studied hippocampal neurogenesis in NF-kappaB p50-deficient mice. Here we demonstrate that in absence of p50, the net rate of neural p...
متن کاملP11: The Effect of Flavonoids in Memory
Flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. Flavonoids can be modulated neuronal function and there by influencing memory, learning and cognitive function. Dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficit...
متن کاملThe role of hippocampal nitric oxide in passive avoidance learning
Abstract: Introduction: Nitric oxide (NO) is a retrograde messenger in hippocampal synaptic plasticity which involves in learning and memory processes. Previous studies revealed that hippocampal pyramidal cells contain NO synthase (NOS) enzyme which produce NO and could be a promising target to evaluate the role of NO in brain cognitive functions. So in this study, using NOS inhibitor (L-NAME)...
متن کامل